Marzilli, L. G., Kistenmacher, T. J. \& Rossi, M. (1977). J. Ain. Chem. Soc. 99, 2797-2798.

Mathews, F. S. \& Rich, A. (1964). Nature, 201, 179-180.
Pippy, M. E. \& Ahmed, F. R. (1968). MEAN plane. NRC Crystallographic Programs, National Research Council, Ottawa, Canada.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phy's. 42, 3175-3187.

Voet, D. \& Rich, A. (1970). Prog. Nucleic Acid. Res. Mol. Biol. 10, 183-265.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). ORABS. Report ORNL-TM-229. Oak Ridge National Laboratory, Tennessee.
Zalkin, A. (1965). FORDAP. Univ. of California, Berkeley, USA.

Acta Cryst. (1977). B33, 3965-3967

Tetrakis[acetatotriphenylphosphinesilver(I)]

By Ernest T. Blues, Michael G. B. Drew and Bankole Femi-Onadeko Department of Chemistry, The University, Whiteknights, Reading RG6 2AD, England

(Received 4 August 1977; accepted 2 September 1977)

Abstract

C}_{80} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Ag}_{4}, M_{r}=1716 \cdot 0\), monoclinic, space group $P 2_{1} / c$ (systematic absences $h 0 l, l=2 n+$ $1,0 k 0, k=2 n+1), a=13 \cdot 616$ (11), $b=12 \cdot 436$ (12), $c=23.489$ (17) $\AA, \beta=91 \cdot 28(11)^{\circ}, U=3976.4 \AA^{3}$, $Z=2, d_{m}=1.43$ (1), $d_{c}=1.43 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo Kıradiation, $\lambda=0.7107 \AA, \mu\left(\right.$ Mo $\left.K_{r}\right)=10.7 \mathrm{~cm}^{-1}$. In the centrosymmetric tetramer, the two independent Ag atoms have different environments. One is bonded to a triphenylphosphine $[\mathrm{Ag}-\mathrm{P} 2.376$ (3) \AA] and to two O atoms $[2.241(8), 2 \cdot 260(10) \AA]$ while the other is

bonded to a triphenylphosphine $[2 \cdot 354$ (3) \AA] and to three O atoms $[2.226(12), 2.320$ (7), 2.475 (7) \AA]. 2895 independent reflexions measured by counter methods have been refined to $R=0.067$.

Introduction. Crystals of $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{4}$ were prepared by reaction of $\mathrm{AgO}_{2} \mathrm{CMe}$ with an equimolar amount of PPh_{3} in toluene at reflux followed by filtration of the hot solution and recrystallization by slow evaporation of the same solvent. A crystal with

Table 1. Final positional parameters $\left(\times 10^{4}\right)$ with estimated standard deviations in parentheses

	x	y	z		x	y	z
$\mathrm{Ag}(1)$	6137 (1)	4821 (1)	4592 (0)	C(23)	8407 (10)	5603 (11)	1875 (6)
$\mathrm{Ag}(2)$	6974 (1)	6974 (1)	4120 (0)	C(24)	7473 (12)	5441 (13)	1736 (7)
$\mathrm{P}(1)$	6441 (2)	3568 (2)	3865 (1)	C(25)	6725 (10)	5784 (12)	2067 (6)
P (2)	8170 (2)	7139 (3)	3405 (1)	C(26)	6911 (9)	6256 (10)	2583 (5)
C(1)	4700 (8)	6831 (9)	4358 (5)	C(32)	9465 (9)	5974 (10)	4066 (5)
$\mathrm{O}(1)$	4857 (5)	6041 (7)	4666 (3)	C(33)	10396 (10)	5668 (12)	4270 (6)
$\mathrm{O}(2)$	5346 (6)	7225 (7)	4046 (4)	C(34)	11246 (9)	6154 (10)	4051 (6)
C(2)	3720 (9)	7388 (10)	4366 (5)	C(35)	11167 (9)	6877 (11)	3644 (6)
$\mathrm{O}(3)$	7149 (7)	7265 (8)	5067 (4)	C(36)	10245 (9)	7237 (10)	3421 (5)
C(3)	7261 (9)	6486 (12)	5381 (6)	C(42)	5801 (9)	2999 (11)	2751 (6)
$\mathrm{O}(4)$	7221 (8)	5564 (10)	5196 (5)	C(43)	5212 (11)	3146 (12)	2270 (6)
C(4)	7442 (12)	6653 (14)	6009 (8)	C(44)	4620 (10)	3933 (12)	2268 (6)
C(11)	8356 (7)	8491 (8)	3168 (4)	C(45)	4506 (12)	4649 (14)	2626 (8)
C(21)	7935 (7)	6430 (8)	2763 (4)	C(46)	5122 (9)	4537 (11)	3169 (6)
C(31)	9383 (8)	6766 (9)	3667 (5)	C(52)	5113 (8)	2105 (10)	4246 (5)
C(41)	5778 (7)	3763 (9)	3211 (5)	C(53)	4764 (10)	1028 (11)	4377 (6)
C(51)	6061 (7)	2222 (8)	4037 (4)	C(54)	5331 (10)	190 (11)	4280 (6)
C(61)	7727 (8)	3471 (9)	3682 (4)	C(55)	6262 (11)	299 (13)	4095 (7)
C(12)	8334 (10)	8811 (10)	2634 (5)	C(56)	6648 (9)	1321 (11)	3959 (5)
C(13)	8293 (10)	9921 (11)	2453 (6)	C(62)	8079 (8)	3703 (9)	3134 (5)
C(14)	8645 (9)	10621 (10)	2852 (6)	C(63)	9103 (9)	3633 (11)	3030 (5)
C(15)	8867 (10)	10308 (12)	3389 (6)	C(64)	9723 (10)	3352 (11)	3456 (6)
C(16)	8698 (9)	9268 (11)	3550 (5)	C(65)	9393 (9)	3103 (11)	4011 (6)
C(22)	8669 (9)	6093 (10)	2386 (6)	C(66)	8366 (8)	3195 (10)	4121 (5)

dimensions $c a 0.5 \times 0.35 \times 0.7 \mathrm{~mm}$ was mounted with the a^{*} axis parallel to the instrument axis of a General Electric XRD 5 apparatus which was used to measure diffraction intensities and cell dimensions. 3688 reflexions with $2 \theta<35^{\circ}$ were measured by the stationary-crystal-stationary-counter method with 10 s counts. 2895 reflections with $I>2 \sigma(I)$ were used in the subsequent calculations.

The structure was solved from the Patterson function and successive Fourier syntheses. Refinement by fullmatrix least squares gave $R=0.067$. Ag and P atoms were refined anisotropically, O and C atoms isotropically. The phenyl ring H atoms were included in the structure factor calculations in trigonal positions but not refined. The final positions are listed in Table 1. The weighting scheme, chosen to give average values of $w \Delta^{2}$ for groups of reflections independent of the values of F_{o} and $\sin \theta / \lambda$, was $w^{1 / 2}=1$ for $F_{o}<80$ and $w^{1 / 2}=$ 80/ F_{o} for $F_{o}>80$. Calculations were performed on a CDC 7600 computer at the University of London Computer Centre with the XRAY set of programs (Stewart, 1972). Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974) as were the corrections for the anomalous dispersion for the Ag and P atoms. There were signs of a disordered solvent molecule of toluene in the difference Fourier syntheses with an occupancy <0.5 around the centre of symmetry at $0, \frac{1}{2}, 0$ but this could not be refined successfully. In the final cycle of

Table 2. Molecular dimensions

The superscript i refers to the coordinates $1-x, 1-y, 1-z$ relative to the reference set in Table 1.

$\mathrm{Ag}(1)-\mathrm{P}(1)$	2.354 (3) \AA	$\mathrm{P}(1)-\mathrm{Ag}(1)-\mathrm{O}(1)$	$129.2(2)^{\circ}$
$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2 \cdot 320$ (7)	$\mathrm{P}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	127.7 (3)
$\mathrm{Ag}(1)-\mathrm{O}(4)$	2.226 (12)	$\mathrm{P}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	109.4 (2)
$\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	2.475 (7)	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	99.8 (4)
$\mathrm{Ag}(2)-\mathrm{P}(2)$	2.376 (3)	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(1)$	78.9 (2)
$\mathrm{Ag}(2)-\mathrm{O}(2)$	$2 \cdot 241$ (8)	$\mathrm{O}(4)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{\prime}\right)$	95.5 (3)
$\mathrm{Ag}(2)-\mathrm{O}(3)$	$2 \cdot 260$ (10)	$\mathrm{P}(2)-\mathrm{Ag}(2)-\mathrm{O}(2)$	128.7 (2)
$\mathrm{Ag}(1) \cdots \mathrm{Ag}(2)$	$3 \cdot 122$ (1)	$\mathrm{P}(2)-\mathrm{Ag}(2)-\mathrm{O}(3)$	128.6 (2)
$\begin{gathered} \mathrm{Ag}(1)-\mathrm{O}(1)- \\ \mathrm{Ag}\left(1^{\prime}\right) \end{gathered}$	$101.1(3)^{\circ}$	$\mathrm{O}(2)-\mathrm{Ag}(2)-\mathrm{O}(3)$	97.9 (3)
$\mathrm{P}(1)-\mathrm{C}(41)$	1.782 (11) \AA	$\mathrm{Ag}(1)-\mathrm{P}(1)-\mathrm{C}(41)$	$116.2(4)^{\circ}$
$\mathrm{P}(1)-\mathrm{C}(51)$	1.801 (11)	$\mathrm{Ag}(1)-\mathrm{P}(1)-\mathrm{C}(51)$	113.4 (4)
$\mathrm{P}(1)-\mathrm{C}(61)$	1.816 (11)	$\mathrm{Ag}(1)-\mathrm{P}(1)-\mathrm{C}(61)$	113.7 (4)
$\mathrm{P}(2)-\mathrm{C}(11)$	1.791 (11)	C(41)-P(1)-C(51)	$100 \cdot 2$ (5)
$\mathrm{P}(2)-\mathrm{C}(21)$	1.769 (11)	$\mathrm{C}(41)-\mathrm{P}(1)-\mathrm{C}(61)$	$106 \cdot 1$ (5)
$\mathrm{P}(2)-\mathrm{C}(31)$	1.810 (11)	$\mathrm{C}(51)-\mathrm{P}(1)-\mathrm{C}(61)$	$106 \cdot 0$ (5)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.236 (11)	$\mathrm{Ag}(2)-\mathrm{P}(2)-\mathrm{C}(11)$	113.9 (4)
$\mathrm{C}(1)-\mathrm{O}(2)$	1.257 (14)	$\mathrm{Ag}(2)-\mathrm{P}(2)-\mathrm{C}(21)$	116.5 (3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.504 (16)	$\mathrm{Ag}(2)-\mathrm{P}(2)-\mathrm{C}(31)$	111.8 (4)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.225 (18)	$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(21)$	103.2 (5)
$\mathrm{O}(4)-\mathrm{C}(3)$	1.227 (19)	$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(31)$	$102 \cdot 2$ (5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.505 (22)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(31)$	108.0 (5)
$\mathrm{Ag}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$126.7(7)^{\circ}$	$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{C}(3)$	129.6 (10)
$\mathrm{Ag}(2)-\mathrm{O}(2)-\mathrm{C}(1)$	127.2 (7)	$\mathrm{Ag}(2)-\mathrm{O}(3)-\mathrm{C}(3)$	118.3 (9)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	120.1 (10)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	119.7 (14)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	117.4 (10)	$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	118.7 (14)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	122.4 (10)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{O}(4)$	121.5 (13)

refinement all shifts were $<0 \cdot 25 \sigma$. The dimensions of the tetramer are given in Table 2.*

Discussion. There has been little structural work on the Ag^{1} carboxylates. $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ is a centrosymmetric dimer (Griffin, Ellett, Mehring, Bullitt \& Waugh, 1972) with both acetates bridging both Ag atoms $[\mathrm{Ag} \cdots \mathrm{Ag}$ 2.967 (3), $\quad \mathrm{Ag}-\mathrm{O} \quad 2.249$ (6), 2.232 (6) \AA]. This $\mathrm{Ag}_{2} \mathrm{O}_{4} \mathrm{C}_{2} R_{2}$ unit (1) is also found in bis(3-hydroxy-4-phenyl-2,2,3-trimethylcyclohexanecarboxylato)disilver (I) dihydrate (Coggon \& McPhail, 1972) with dimensions $\mathrm{Ag} \cdots \mathrm{Ag} 2.778$ (5), 2.834 (5), $\mathrm{Ag}-\mathrm{O} 2.20$, $2.29 \AA$; and in silver perfluorobutyrate (Blakeslee \& Hoard, 1956) with dimensions $\mathrm{Ag} \cdots \mathrm{Ag} 2.90$ (2), $\mathrm{Ag}-\mathrm{O} 2.25$ (4) Ả. Silver glycine nitrate (Rao \& Viswamitra, 1972) also contains this dinuclear unit but the units are linked by further $\mathrm{Ag}-\mathrm{O}$ interactions to give a polymeric structure similar to that found in copper(I) acetate (Drew, Edwards \& Richards, 1973; Mounts, Ogura \& Fernando, 1974). In all these examples the $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ angles are in the range $158-163^{\circ}$.

(1)

The structure of $\mathrm{Ag}_{4}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{4}$ is shown in Fig. 1. There are no $\mathrm{Ag}-\mathrm{Ag}$ bonds as the shortest $\mathrm{Ag} \cdots \mathrm{Ag}$ distance is $3 \cdot 122$ (1) \AA. The two independent Ag atoms have different environments. $\mathrm{Ag}(2)$ is bonded to triphenylphosphine $[\mathrm{Ag}(2)-\mathrm{P}(2) 2 \cdot 376(3) \AA]$ and is

[^0]Fig. 1. The structure of $\mathrm{Ag}_{4}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{4}$ with phenyl rings omitted for clarity.
linked to $\mathrm{Ag}(1)$ via acetate groups $[\mathrm{Ag}(2)-\mathrm{O}(2)$ 2.241 (8), $\mathrm{Ag}(2)-\mathrm{O}(3) 2 \cdot 260$ (10) \AA] in a similar fashion to that shown in (1) except that the $\mathrm{O}(2)-\mathrm{Ag}-\mathrm{O}(3)$ angle is only 97.9 (3) ${ }^{\circ}$ and not 160° as found in the examples cited above. $\mathrm{Ag}(1)$ is also bonded to triphenylphosphine $[\mathrm{Ag}(1)-\mathrm{P}(1) 2 \cdot 354$ (3) \AA] and to two O atoms of acetates that bridge to $\mathrm{Ag}(2)$ $[\mathrm{Ag}(1)-\mathrm{O}(1) 2 \cdot 320(7), \mathrm{Ag}(1)-\mathrm{O}(4) 2 \cdot 226(12) \AA$, $\left.\mathrm{O}(1)-\mathrm{Ag}-\mathrm{O}(4) \quad 99.8(4)^{\circ}\right]$. In addition, $\mathrm{Ag}(1)$ is bonded to an O atom $\left[\mathrm{Ag}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right) 2.475\right.$ (7) $\left.\AA\right]$ of a second dinuclear unit. There is a precedent for the $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ angles in the tetramer; in bis(silvertrifluoroacetate)benzene (Hunt, Lee \& Amma, 1974) there are two independent bridges of type (1), one with an angle of 98.3 and the other of $161 \cdot 6^{\circ}$.

The geometries of the $\operatorname{Ag}(1), \operatorname{Ag}(2)$ environments can be considered to be trigonal planar and tetrahedral, respectively, with large distortions caused by the ring formation. The $\mathrm{Ag}-\mathrm{O}$ distances (mean 2.24 $\AA)$ are as expected except for $\mathrm{Ag}(1)-\mathrm{O}(1)$ and $\mathrm{Ag}(1)-\mathrm{O}\left(1^{i}\right)$, which are lengthened by bridge formation. The $\mathrm{Ag}-\mathrm{P}$ distances can be compared with those found in $\mathrm{Ag}_{4}\left(\mathrm{PPh}_{3}\right)_{4} X_{4}$ (Teo \& Calabrese, 1975, 1976) which are $2 \cdot 372-2 \cdot 386(X=\mathrm{Cl}), 2 \cdot 429,2 \cdot 415$ $(X=\mathrm{Br})$ and $2.455,2.466 \AA(X=\mathrm{I})$. It was argued that these distances were different because of variations in steric crowding in the three molecules and therefore it is fitting that the $\mathrm{Ag}-\mathrm{P}$ distances in the present uncrowded tetramer are comparable to those in the tetrachloride.

No report of the analogous $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PPh}_{3}\right)$ complex has been found but $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ is a monomer with a bidentate acetate ligand in which the metal atom has a distorted tetrahedral environment (Drew, Othman, Edwards \& Richards, 1975). We have also prepared $\mathrm{Ag}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PPh}_{3}\right)_{2}$. Tetragonal silver(I)
ketenide ($2 \mathrm{~g}, 0.008 \mathrm{~mol}$) was refluxed for 15 h with $\mathrm{PPh}_{3}(2.45 \mathrm{~g}, 0.009 \mathrm{~mol})$ in toluene. The toluene phase was filtered from unreacted silver ketenide, evaporated to dryness and the resulting solid was recrystallized from toluene. Found C $66 \cdot 0 \%$, H 4.73%, P $8 \cdot 12 \%$, Ag 16.2%. Calculated for $\mathrm{Ag}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{C} 66.0 \%$, H 4.78%, P 8.97\%, Ag 15.6%. Powder patterns show that the Ag and Cu compounds are not isomorphous.

We thank A. W. Johans for his assistance with the crystallographic investigations.

References

Blakeslee, A. E. \& Hoard, J. L. (1956). J. Am. Chem. Soc. 78, 3029-3033.
Coggon, P. \& McPhail, A. T. (1972). Chem. Commun. pp. 91-92.
Drew, M. G. B., Edwards, D. A. \& Richards, R. (1973). Chem. Commun. pp. 124-125.
Drew, M. G. B., Othman, A. H., Edwards, D. A. \& Richards, R. (1975). Acta Cryst. B31, 2695-2697.
Griffin, R. G., Ellett, J. D., Mehring, M., Bullitt, J. G. \& Waugh, J. S. (1972). J. Chem. Phys. 57, 2147-2155.
Hunt, G. W., Lee, T. C. \& Amma, E. L. (1974). Inorg. Nucl. Chem. Lett. 10, 909-915.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Mounts, R. D., Ogura, T. \& Fernando, Q. (1974). Inorg. Chem. 13, 802-805.
Rao, J. K. M. \& Viswamitra, M. A. (1972). Acta Cryst. B28, 1484-1496.
Stewart, J. M. (1972). The XRAY system. Tech. Rep. TR192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Teo, B.-K. \& Calabrese, J. C. (1975). J. Am. Chem. Soc. 97, 1256-1257.
Teo, B.-K. \& Calabrese, J. C. (1976). Chem. Commun. pp. 185-186.

2,3,7,8,12,13,17,18-Octaethyl-5-[2,2-bis(ethoxycarbonyl)vinyl]-22H,24H-porphine

By W.S. Sheldrick
Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim, Federal Republic of Germany

(Received 25 July 1977; accepted 5 September 1977)

Abstract

C}_{44} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{4}\), triclinic, $P \overline{1}, a=14.590$ (10), $b=15.439$ (7), $c=9.692$ (6) $\AA, ~ \alpha=92.61$ (3), $\beta=$ 100.93 (4), $\gamma=66.98(3)^{\circ}, M_{r}=737 \cdot 0, Z=2, D_{x}=$ $1.24 \mathrm{~g} \mathrm{~cm}^{-3}$. The porphyrin skeleton is significantly ruffled, in particular in ring A, where atom deviations of -0.202 and $-0.171 \AA[C(2)$ and $C(3)]$ from the N

atom least-squares plane are observed. Although individual bond lengths and angles in the macrocycle are similar to those in porphine the geometry of the central 'hole' is distinctly rhomboid (neighbouring $\mathrm{N} \ldots \mathrm{N}$ distances: $2.78,3.06,2.79,3.06 \AA$) rather than rhombic as in the parent compound.

[^0]: * Lists of structure factors, anisotropic thermal parameters and dimensions of the benzene rings have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32970 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

